Metamath Proof Explorer


Theorem mgmidcl

Description: The identity element of a magma, if it exists, belongs to the base set. (Contributed by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ismgmid.b B=BaseG
ismgmid.o 0˙=0G
ismgmid.p +˙=+G
mgmidcl.e φeBxBe+˙x=xx+˙e=x
Assertion mgmidcl φ0˙B

Proof

Step Hyp Ref Expression
1 ismgmid.b B=BaseG
2 ismgmid.o 0˙=0G
3 ismgmid.p +˙=+G
4 mgmidcl.e φeBxBe+˙x=xx+˙e=x
5 eqid 0˙=0˙
6 1 2 3 4 ismgmid φ0˙BxB0˙+˙x=xx+˙0˙=x0˙=0˙
7 5 6 mpbiri φ0˙BxB0˙+˙x=xx+˙0˙=x
8 7 simpld φ0˙B