Metamath Proof Explorer


Theorem grpidcl

Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses grpidcl.b B = Base G
grpidcl.o 0 ˙ = 0 G
Assertion grpidcl G Grp 0 ˙ B

Proof

Step Hyp Ref Expression
1 grpidcl.b B = Base G
2 grpidcl.o 0 ˙ = 0 G
3 grpmnd G Grp G Mnd
4 1 2 mndidcl G Mnd 0 ˙ B
5 3 4 syl G Grp 0 ˙ B