Metamath Proof Explorer


Theorem grpidcl

Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses grpidcl.b
|- B = ( Base ` G )
grpidcl.o
|- .0. = ( 0g ` G )
Assertion grpidcl
|- ( G e. Grp -> .0. e. B )

Proof

Step Hyp Ref Expression
1 grpidcl.b
 |-  B = ( Base ` G )
2 grpidcl.o
 |-  .0. = ( 0g ` G )
3 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
4 1 2 mndidcl
 |-  ( G e. Mnd -> .0. e. B )
5 3 4 syl
 |-  ( G e. Grp -> .0. e. B )