Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpidcl.b | |- B = ( Base ` G ) |
|
grpidcl.o | |- .0. = ( 0g ` G ) |
||
Assertion | grpidcl | |- ( G e. Grp -> .0. e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpidcl.b | |- B = ( Base ` G ) |
|
2 | grpidcl.o | |- .0. = ( 0g ` G ) |
|
3 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
4 | 1 2 | mndidcl | |- ( G e. Mnd -> .0. e. B ) |
5 | 3 4 | syl | |- ( G e. Grp -> .0. e. B ) |