Metamath Proof Explorer


Theorem riotaeqdv

Description: Formula-building deduction for iota. (Contributed by NM, 15-Sep-2011)

Ref Expression
Hypothesis riotaeqdv.1 φA=B
Assertion riotaeqdv φιxA|ψ=ιxB|ψ

Proof

Step Hyp Ref Expression
1 riotaeqdv.1 φA=B
2 1 eleq2d φxAxB
3 2 anbi1d φxAψxBψ
4 3 iotabidv φιx|xAψ=ιx|xBψ
5 df-riota ιxA|ψ=ιx|xAψ
6 df-riota ιxB|ψ=ιx|xBψ
7 4 5 6 3eqtr4g φιxA|ψ=ιxB|ψ