Metamath Proof Explorer


Theorem mulgm1

Description: Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by Mario Carneiro, 20-Dec-2014)

Ref Expression
Hypotheses mulgnncl.b B=BaseG
mulgnncl.t ·˙=G
mulgneg.i I=invgG
Assertion mulgm1 GGrpXB-1·˙X=IX

Proof

Step Hyp Ref Expression
1 mulgnncl.b B=BaseG
2 mulgnncl.t ·˙=G
3 mulgneg.i I=invgG
4 1z 1
5 1 2 3 mulgneg GGrp1XB-1·˙X=I1·˙X
6 4 5 mp3an2 GGrpXB-1·˙X=I1·˙X
7 1 2 mulg1 XB1·˙X=X
8 7 adantl GGrpXB1·˙X=X
9 8 fveq2d GGrpXBI1·˙X=IX
10 6 9 eqtrd GGrpXB-1·˙X=IX