| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnncl.b |
|- B = ( Base ` G ) |
| 2 |
|
mulgnncl.t |
|- .x. = ( .g ` G ) |
| 3 |
|
mulgneg.i |
|- I = ( invg ` G ) |
| 4 |
|
1z |
|- 1 e. ZZ |
| 5 |
1 2 3
|
mulgneg |
|- ( ( G e. Grp /\ 1 e. ZZ /\ X e. B ) -> ( -u 1 .x. X ) = ( I ` ( 1 .x. X ) ) ) |
| 6 |
4 5
|
mp3an2 |
|- ( ( G e. Grp /\ X e. B ) -> ( -u 1 .x. X ) = ( I ` ( 1 .x. X ) ) ) |
| 7 |
1 2
|
mulg1 |
|- ( X e. B -> ( 1 .x. X ) = X ) |
| 8 |
7
|
adantl |
|- ( ( G e. Grp /\ X e. B ) -> ( 1 .x. X ) = X ) |
| 9 |
8
|
fveq2d |
|- ( ( G e. Grp /\ X e. B ) -> ( I ` ( 1 .x. X ) ) = ( I ` X ) ) |
| 10 |
6 9
|
eqtrd |
|- ( ( G e. Grp /\ X e. B ) -> ( -u 1 .x. X ) = ( I ` X ) ) |