| Step |
Hyp |
Ref |
Expression |
| 1 |
|
submmulgcl.t |
|
| 2 |
|
submmulg.h |
|
| 3 |
|
submmulg.t |
|
| 4 |
|
simpl1 |
|
| 5 |
|
eqid |
|
| 6 |
2 5
|
ressplusg |
|
| 7 |
4 6
|
syl |
|
| 8 |
7
|
seqeq2d |
|
| 9 |
8
|
fveq1d |
|
| 10 |
|
simpr |
|
| 11 |
|
eqid |
|
| 12 |
11
|
submss |
|
| 13 |
12
|
3ad2ant1 |
|
| 14 |
|
simp3 |
|
| 15 |
13 14
|
sseldd |
|
| 16 |
15
|
adantr |
|
| 17 |
|
eqid |
|
| 18 |
11 5 1 17
|
mulgnn |
|
| 19 |
10 16 18
|
syl2anc |
|
| 20 |
2
|
submbas |
|
| 21 |
20
|
3ad2ant1 |
|
| 22 |
14 21
|
eleqtrd |
|
| 23 |
22
|
adantr |
|
| 24 |
|
eqid |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
24 25 3 26
|
mulgnn |
|
| 28 |
10 23 27
|
syl2anc |
|
| 29 |
9 19 28
|
3eqtr4d |
|
| 30 |
|
simpl1 |
|
| 31 |
|
eqid |
|
| 32 |
2 31
|
subm0 |
|
| 33 |
30 32
|
syl |
|
| 34 |
15
|
adantr |
|
| 35 |
11 31 1
|
mulg0 |
|
| 36 |
34 35
|
syl |
|
| 37 |
22
|
adantr |
|
| 38 |
|
eqid |
|
| 39 |
24 38 3
|
mulg0 |
|
| 40 |
37 39
|
syl |
|
| 41 |
33 36 40
|
3eqtr4d |
|
| 42 |
|
simpr |
|
| 43 |
42
|
oveq1d |
|
| 44 |
42
|
oveq1d |
|
| 45 |
41 43 44
|
3eqtr4d |
|
| 46 |
|
simp2 |
|
| 47 |
|
elnn0 |
|
| 48 |
46 47
|
sylib |
|
| 49 |
29 45 48
|
mpjaodan |
|