Metamath Proof Explorer


Definition df-submnd

Description: A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Assertion df-submnd SubMnd=sMndt𝒫Bases|0stxtytx+syt

Detailed syntax breakdown

Step Hyp Ref Expression
0 csubmnd classSubMnd
1 vs setvars
2 cmnd classMnd
3 vt setvart
4 cbs classBase
5 1 cv setvars
6 5 4 cfv classBases
7 6 cpw class𝒫Bases
8 c0g class0𝑔
9 5 8 cfv class0s
10 3 cv setvart
11 9 10 wcel wff0st
12 vx setvarx
13 vy setvary
14 12 cv setvarx
15 cplusg class+𝑔
16 5 15 cfv class+s
17 13 cv setvary
18 14 17 16 co classx+sy
19 18 10 wcel wffx+syt
20 19 13 10 wral wffytx+syt
21 20 12 10 wral wffxtytx+syt
22 11 21 wa wff0stxtytx+syt
23 22 3 7 crab classt𝒫Bases|0stxtytx+syt
24 1 2 23 cmpt classsMndt𝒫Bases|0stxtytx+syt
25 0 24 wceq wffSubMnd=sMndt𝒫Bases|0stxtytx+syt