Metamath Proof Explorer


Theorem submss

Description: Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypothesis submss.b B=BaseM
Assertion submss SSubMndMSB

Proof

Step Hyp Ref Expression
1 submss.b B=BaseM
2 submrcl SSubMndMMMnd
3 eqid 0M=0M
4 eqid M𝑠S=M𝑠S
5 1 3 4 issubm2 MMndSSubMndMSB0MSM𝑠SMnd
6 2 5 syl SSubMndMSSubMndMSB0MSM𝑠SMnd
7 6 ibi SSubMndMSB0MSM𝑠SMnd
8 7 simp1d SSubMndMSB