Metamath Proof Explorer


Theorem issubm2

Description: Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015)

Ref Expression
Hypotheses issubm2.b B=BaseM
issubm2.z 0˙=0M
issubm2.h H=M𝑠S
Assertion issubm2 MMndSSubMndMSB0˙SHMnd

Proof

Step Hyp Ref Expression
1 issubm2.b B=BaseM
2 issubm2.z 0˙=0M
3 issubm2.h H=M𝑠S
4 eqid +M=+M
5 1 2 4 issubm MMndSSubMndMSB0˙SxSySx+MyS
6 1 4 2 3 issubmnd MMndSB0˙SHMndxSySx+MyS
7 6 bicomd MMndSB0˙SxSySx+MySHMnd
8 7 3expb MMndSB0˙SxSySx+MySHMnd
9 8 pm5.32da MMndSB0˙SxSySx+MySSB0˙SHMnd
10 df-3an SB0˙SxSySx+MySSB0˙SxSySx+MyS
11 df-3an SB0˙SHMndSB0˙SHMnd
12 9 10 11 3bitr4g MMndSB0˙SxSySx+MySSB0˙SHMnd
13 5 12 bitrd MMndSSubMndMSB0˙SHMnd