Metamath Proof Explorer


Theorem issubmndb

Description: The submonoid predicate. Analogous to issubg . (Contributed by AV, 1-Feb-2024)

Ref Expression
Hypotheses issubmndb.b B = Base G
issubmndb.z 0 ˙ = 0 G
Assertion issubmndb S SubMnd G G Mnd G 𝑠 S Mnd S B 0 ˙ S

Proof

Step Hyp Ref Expression
1 issubmndb.b B = Base G
2 issubmndb.z 0 ˙ = 0 G
3 eqid G 𝑠 S = G 𝑠 S
4 1 2 3 issubm2 G Mnd S SubMnd G S B 0 ˙ S G 𝑠 S Mnd
5 3anrot G 𝑠 S Mnd S B 0 ˙ S S B 0 ˙ S G 𝑠 S Mnd
6 3anass G 𝑠 S Mnd S B 0 ˙ S G 𝑠 S Mnd S B 0 ˙ S
7 5 6 bitr3i S B 0 ˙ S G 𝑠 S Mnd G 𝑠 S Mnd S B 0 ˙ S
8 4 7 bitrdi G Mnd S SubMnd G G 𝑠 S Mnd S B 0 ˙ S
9 8 pm5.32i G Mnd S SubMnd G G Mnd G 𝑠 S Mnd S B 0 ˙ S
10 submrcl S SubMnd G G Mnd
11 10 pm4.71ri S SubMnd G G Mnd S SubMnd G
12 anass G Mnd G 𝑠 S Mnd S B 0 ˙ S G Mnd G 𝑠 S Mnd S B 0 ˙ S
13 9 11 12 3bitr4i S SubMnd G G Mnd G 𝑠 S Mnd S B 0 ˙ S