Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Monoid homomorphisms and submonoids
issubmndb
Next ⟩
issubmd
Metamath Proof Explorer
Ascii
Unicode
Theorem
issubmndb
Description:
The submonoid predicate. Analogous to
issubg
.
(Contributed by
AV
, 1-Feb-2024)
Ref
Expression
Hypotheses
issubmndb.b
⊢
B
=
Base
G
issubmndb.z
⊢
0
˙
=
0
G
Assertion
issubmndb
⊢
S
∈
SubMnd
⁡
G
↔
G
∈
Mnd
∧
G
↾
𝑠
S
∈
Mnd
∧
S
⊆
B
∧
0
˙
∈
S
Proof
Step
Hyp
Ref
Expression
1
issubmndb.b
⊢
B
=
Base
G
2
issubmndb.z
⊢
0
˙
=
0
G
3
eqid
⊢
G
↾
𝑠
S
=
G
↾
𝑠
S
4
1
2
3
issubm2
⊢
G
∈
Mnd
→
S
∈
SubMnd
⁡
G
↔
S
⊆
B
∧
0
˙
∈
S
∧
G
↾
𝑠
S
∈
Mnd
5
3anrot
⊢
G
↾
𝑠
S
∈
Mnd
∧
S
⊆
B
∧
0
˙
∈
S
↔
S
⊆
B
∧
0
˙
∈
S
∧
G
↾
𝑠
S
∈
Mnd
6
3anass
⊢
G
↾
𝑠
S
∈
Mnd
∧
S
⊆
B
∧
0
˙
∈
S
↔
G
↾
𝑠
S
∈
Mnd
∧
S
⊆
B
∧
0
˙
∈
S
7
5
6
bitr3i
⊢
S
⊆
B
∧
0
˙
∈
S
∧
G
↾
𝑠
S
∈
Mnd
↔
G
↾
𝑠
S
∈
Mnd
∧
S
⊆
B
∧
0
˙
∈
S
8
4
7
bitrdi
⊢
G
∈
Mnd
→
S
∈
SubMnd
⁡
G
↔
G
↾
𝑠
S
∈
Mnd
∧
S
⊆
B
∧
0
˙
∈
S
9
8
pm5.32i
⊢
G
∈
Mnd
∧
S
∈
SubMnd
⁡
G
↔
G
∈
Mnd
∧
G
↾
𝑠
S
∈
Mnd
∧
S
⊆
B
∧
0
˙
∈
S
10
submrcl
⊢
S
∈
SubMnd
⁡
G
→
G
∈
Mnd
11
10
pm4.71ri
⊢
S
∈
SubMnd
⁡
G
↔
G
∈
Mnd
∧
S
∈
SubMnd
⁡
G
12
anass
⊢
G
∈
Mnd
∧
G
↾
𝑠
S
∈
Mnd
∧
S
⊆
B
∧
0
˙
∈
S
↔
G
∈
Mnd
∧
G
↾
𝑠
S
∈
Mnd
∧
S
⊆
B
∧
0
˙
∈
S
13
9
11
12
3bitr4i
⊢
S
∈
SubMnd
⁡
G
↔
G
∈
Mnd
∧
G
↾
𝑠
S
∈
Mnd
∧
S
⊆
B
∧
0
˙
∈
S