Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Stefan O'Rear, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | issubmd.b | |
|
issubmd.p | |
||
issubmd.z | |
||
issubmd.m | |
||
issubmd.cz | |
||
issubmd.cp | |
||
issubmd.ch | |
||
issubmd.th | |
||
issubmd.ta | |
||
issubmd.et | |
||
Assertion | issubmd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issubmd.b | |
|
2 | issubmd.p | |
|
3 | issubmd.z | |
|
4 | issubmd.m | |
|
5 | issubmd.cz | |
|
6 | issubmd.cp | |
|
7 | issubmd.ch | |
|
8 | issubmd.th | |
|
9 | issubmd.ta | |
|
10 | issubmd.et | |
|
11 | ssrab2 | |
|
12 | 11 | a1i | |
13 | 1 3 | mndidcl | |
14 | 4 13 | syl | |
15 | 7 14 5 | elrabd | |
16 | 8 | elrab | |
17 | 9 | elrab | |
18 | 16 17 | anbi12i | |
19 | 4 | adantr | |
20 | simprll | |
|
21 | simprrl | |
|
22 | 1 2 | mndcl | |
23 | 19 20 21 22 | syl3anc | |
24 | an4 | |
|
25 | 24 6 | sylan2b | |
26 | 10 23 25 | elrabd | |
27 | 18 26 | sylan2b | |
28 | 27 | ralrimivva | |
29 | 1 3 2 | issubm | |
30 | 4 29 | syl | |
31 | 12 15 28 30 | mpbir3and | |