Metamath Proof Explorer


Theorem issubmd

Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015) (Revised by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses issubmd.b B=BaseM
issubmd.p +˙=+M
issubmd.z 0˙=0M
issubmd.m φMMnd
issubmd.cz φχ
issubmd.cp φxByBθτη
issubmd.ch z=0˙ψχ
issubmd.th z=xψθ
issubmd.ta z=yψτ
issubmd.et z=x+˙yψη
Assertion issubmd φzB|ψSubMndM

Proof

Step Hyp Ref Expression
1 issubmd.b B=BaseM
2 issubmd.p +˙=+M
3 issubmd.z 0˙=0M
4 issubmd.m φMMnd
5 issubmd.cz φχ
6 issubmd.cp φxByBθτη
7 issubmd.ch z=0˙ψχ
8 issubmd.th z=xψθ
9 issubmd.ta z=yψτ
10 issubmd.et z=x+˙yψη
11 ssrab2 zB|ψB
12 11 a1i φzB|ψB
13 1 3 mndidcl MMnd0˙B
14 4 13 syl φ0˙B
15 7 14 5 elrabd φ0˙zB|ψ
16 8 elrab xzB|ψxBθ
17 9 elrab yzB|ψyBτ
18 16 17 anbi12i xzB|ψyzB|ψxBθyBτ
19 4 adantr φxBθyBτMMnd
20 simprll φxBθyBτxB
21 simprrl φxBθyBτyB
22 1 2 mndcl MMndxByBx+˙yB
23 19 20 21 22 syl3anc φxBθyBτx+˙yB
24 an4 xBθyBτxByBθτ
25 24 6 sylan2b φxBθyBτη
26 10 23 25 elrabd φxBθyBτx+˙yzB|ψ
27 18 26 sylan2b φxzB|ψyzB|ψx+˙yzB|ψ
28 27 ralrimivva φxzB|ψyzB|ψx+˙yzB|ψ
29 1 3 2 issubm MMndzB|ψSubMndMzB|ψB0˙zB|ψxzB|ψyzB|ψx+˙yzB|ψ
30 4 29 syl φzB|ψSubMndMzB|ψB0˙zB|ψxzB|ψyzB|ψx+˙yzB|ψ
31 12 15 28 30 mpbir3and φzB|ψSubMndM