| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issubmnd.b |
|
| 2 |
|
issubmnd.p |
|
| 3 |
|
issubmnd.z |
|
| 4 |
|
issubmnd.h |
|
| 5 |
|
simplr |
|
| 6 |
|
simprl |
|
| 7 |
|
simpll2 |
|
| 8 |
4 1
|
ressbas2 |
|
| 9 |
7 8
|
syl |
|
| 10 |
6 9
|
eleqtrd |
|
| 11 |
|
simprr |
|
| 12 |
11 9
|
eleqtrd |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
13 14
|
mndcl |
|
| 16 |
5 10 12 15
|
syl3anc |
|
| 17 |
1
|
fvexi |
|
| 18 |
17
|
ssex |
|
| 19 |
18
|
3ad2ant2 |
|
| 20 |
4 2
|
ressplusg |
|
| 21 |
19 20
|
syl |
|
| 22 |
21
|
ad2antrr |
|
| 23 |
22
|
oveqd |
|
| 24 |
16 23 9
|
3eltr4d |
|
| 25 |
24
|
ralrimivva |
|
| 26 |
|
simpl2 |
|
| 27 |
26 8
|
syl |
|
| 28 |
21
|
adantr |
|
| 29 |
|
ovrspc2v |
|
| 30 |
29
|
ancoms |
|
| 31 |
30
|
3impb |
|
| 32 |
31
|
3adant1l |
|
| 33 |
|
simpl1 |
|
| 34 |
26
|
sseld |
|
| 35 |
26
|
sseld |
|
| 36 |
26
|
sseld |
|
| 37 |
34 35 36
|
3anim123d |
|
| 38 |
37
|
imp |
|
| 39 |
1 2
|
mndass |
|
| 40 |
33 38 39
|
syl2an2r |
|
| 41 |
|
simpl3 |
|
| 42 |
26
|
sselda |
|
| 43 |
1 2 3
|
mndlid |
|
| 44 |
33 42 43
|
syl2an2r |
|
| 45 |
1 2 3
|
mndrid |
|
| 46 |
33 42 45
|
syl2an2r |
|
| 47 |
27 28 32 40 41 44 46
|
ismndd |
|
| 48 |
25 47
|
impbida |
|