Metamath Proof Explorer


Theorem ress0g

Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 . (Contributed by Thierry Arnoux, 23-Oct-2017)

Ref Expression
Hypotheses ress0g.s S=R𝑠A
ress0g.b B=BaseR
ress0g.0 0˙=0R
Assertion ress0g RMnd0˙AAB0˙=0S

Proof

Step Hyp Ref Expression
1 ress0g.s S=R𝑠A
2 ress0g.b B=BaseR
3 ress0g.0 0˙=0R
4 1 2 ressbas2 ABA=BaseS
5 4 3ad2ant3 RMnd0˙AABA=BaseS
6 simp3 RMnd0˙AABAB
7 2 fvexi BV
8 ssexg ABBVAV
9 6 7 8 sylancl RMnd0˙AABAV
10 eqid +R=+R
11 1 10 ressplusg AV+R=+S
12 9 11 syl RMnd0˙AAB+R=+S
13 simp2 RMnd0˙AAB0˙A
14 simpl1 RMnd0˙AABxARMnd
15 6 sselda RMnd0˙AABxAxB
16 2 10 3 mndlid RMndxB0˙+Rx=x
17 14 15 16 syl2anc RMnd0˙AABxA0˙+Rx=x
18 2 10 3 mndrid RMndxBx+R0˙=x
19 14 15 18 syl2anc RMnd0˙AABxAx+R0˙=x
20 5 12 13 17 19 grpidd RMnd0˙AAB0˙=0S