Metamath Proof Explorer


Theorem ress0g

Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 . (Contributed by Thierry Arnoux, 23-Oct-2017)

Ref Expression
Hypotheses ress0g.s 𝑆 = ( 𝑅s 𝐴 )
ress0g.b 𝐵 = ( Base ‘ 𝑅 )
ress0g.0 0 = ( 0g𝑅 )
Assertion ress0g ( ( 𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵 ) → 0 = ( 0g𝑆 ) )

Proof

Step Hyp Ref Expression
1 ress0g.s 𝑆 = ( 𝑅s 𝐴 )
2 ress0g.b 𝐵 = ( Base ‘ 𝑅 )
3 ress0g.0 0 = ( 0g𝑅 )
4 1 2 ressbas2 ( 𝐴𝐵𝐴 = ( Base ‘ 𝑆 ) )
5 4 3ad2ant3 ( ( 𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵 ) → 𝐴 = ( Base ‘ 𝑆 ) )
6 simp3 ( ( 𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵 ) → 𝐴𝐵 )
7 2 fvexi 𝐵 ∈ V
8 ssexg ( ( 𝐴𝐵𝐵 ∈ V ) → 𝐴 ∈ V )
9 6 7 8 sylancl ( ( 𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵 ) → 𝐴 ∈ V )
10 eqid ( +g𝑅 ) = ( +g𝑅 )
11 1 10 ressplusg ( 𝐴 ∈ V → ( +g𝑅 ) = ( +g𝑆 ) )
12 9 11 syl ( ( 𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵 ) → ( +g𝑅 ) = ( +g𝑆 ) )
13 simp2 ( ( 𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵 ) → 0𝐴 )
14 simpl1 ( ( ( 𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵 ) ∧ 𝑥𝐴 ) → 𝑅 ∈ Mnd )
15 6 sselda ( ( ( 𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵 ) ∧ 𝑥𝐴 ) → 𝑥𝐵 )
16 2 10 3 mndlid ( ( 𝑅 ∈ Mnd ∧ 𝑥𝐵 ) → ( 0 ( +g𝑅 ) 𝑥 ) = 𝑥 )
17 14 15 16 syl2anc ( ( ( 𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵 ) ∧ 𝑥𝐴 ) → ( 0 ( +g𝑅 ) 𝑥 ) = 𝑥 )
18 2 10 3 mndrid ( ( 𝑅 ∈ Mnd ∧ 𝑥𝐵 ) → ( 𝑥 ( +g𝑅 ) 0 ) = 𝑥 )
19 14 15 18 syl2anc ( ( ( 𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵 ) ∧ 𝑥𝐴 ) → ( 𝑥 ( +g𝑅 ) 0 ) = 𝑥 )
20 5 12 13 17 19 grpidd ( ( 𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵 ) → 0 = ( 0g𝑆 ) )