Metamath Proof Explorer


Theorem grpidd

Description: Deduce the identity element of a magma from its properties. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses grpidd.b φB=BaseG
grpidd.p φ+˙=+G
grpidd.z φ0˙B
grpidd.i φxB0˙+˙x=x
grpidd.j φxBx+˙0˙=x
Assertion grpidd φ0˙=0G

Proof

Step Hyp Ref Expression
1 grpidd.b φB=BaseG
2 grpidd.p φ+˙=+G
3 grpidd.z φ0˙B
4 grpidd.i φxB0˙+˙x=x
5 grpidd.j φxBx+˙0˙=x
6 eqid BaseG=BaseG
7 eqid 0G=0G
8 eqid +G=+G
9 3 1 eleqtrd φ0˙BaseG
10 1 eleq2d φxBxBaseG
11 10 biimpar φxBaseGxB
12 2 adantr φxB+˙=+G
13 12 oveqd φxB0˙+˙x=0˙+Gx
14 13 4 eqtr3d φxB0˙+Gx=x
15 11 14 syldan φxBaseG0˙+Gx=x
16 12 oveqd φxBx+˙0˙=x+G0˙
17 16 5 eqtr3d φxBx+G0˙=x
18 11 17 syldan φxBaseGx+G0˙=x
19 6 7 8 9 15 18 ismgmid2 φ0˙=0G