Metamath Proof Explorer


Theorem ismgmid2

Description: Show that a given element is the identity element of a magma. (Contributed by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses ismgmid.b B=BaseG
ismgmid.o 0˙=0G
ismgmid.p +˙=+G
ismgmid2.u φUB
ismgmid2.l φxBU+˙x=x
ismgmid2.r φxBx+˙U=x
Assertion ismgmid2 φU=0˙

Proof

Step Hyp Ref Expression
1 ismgmid.b B=BaseG
2 ismgmid.o 0˙=0G
3 ismgmid.p +˙=+G
4 ismgmid2.u φUB
5 ismgmid2.l φxBU+˙x=x
6 ismgmid2.r φxBx+˙U=x
7 5 6 jca φxBU+˙x=xx+˙U=x
8 7 ralrimiva φxBU+˙x=xx+˙U=x
9 oveq1 e=Ue+˙x=U+˙x
10 9 eqeq1d e=Ue+˙x=xU+˙x=x
11 10 ovanraleqv e=UxBe+˙x=xx+˙e=xxBU+˙x=xx+˙U=x
12 11 rspcev UBxBU+˙x=xx+˙U=xeBxBe+˙x=xx+˙e=x
13 4 8 12 syl2anc φeBxBe+˙x=xx+˙e=x
14 1 2 3 13 ismgmid φUBxBU+˙x=xx+˙U=x0˙=U
15 4 8 14 mpbi2and φ0˙=U
16 15 eqcomd φU=0˙