Metamath Proof Explorer


Theorem ovanraleqv

Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022)

Ref Expression
Hypothesis ovanraleqv.1 B=Xφψ
Assertion ovanraleqv B=XxVφA·˙B=CxVψA·˙X=C

Proof

Step Hyp Ref Expression
1 ovanraleqv.1 B=Xφψ
2 oveq2 B=XA·˙B=A·˙X
3 2 eqeq1d B=XA·˙B=CA·˙X=C
4 1 3 anbi12d B=XφA·˙B=CψA·˙X=C
5 4 ralbidv B=XxVφA·˙B=CxVψA·˙X=C