Metamath Proof Explorer


Theorem ovanraleqv

Description: Equality theorem for a conjunction with an operation values within a restricted universal quantification. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022)

Ref Expression
Hypothesis ovanraleqv.1
|- ( B = X -> ( ph <-> ps ) )
Assertion ovanraleqv
|- ( B = X -> ( A. x e. V ( ph /\ ( A .x. B ) = C ) <-> A. x e. V ( ps /\ ( A .x. X ) = C ) ) )

Proof

Step Hyp Ref Expression
1 ovanraleqv.1
 |-  ( B = X -> ( ph <-> ps ) )
2 oveq2
 |-  ( B = X -> ( A .x. B ) = ( A .x. X ) )
3 2 eqeq1d
 |-  ( B = X -> ( ( A .x. B ) = C <-> ( A .x. X ) = C ) )
4 1 3 anbi12d
 |-  ( B = X -> ( ( ph /\ ( A .x. B ) = C ) <-> ( ps /\ ( A .x. X ) = C ) ) )
5 4 ralbidv
 |-  ( B = X -> ( A. x e. V ( ph /\ ( A .x. B ) = C ) <-> A. x e. V ( ps /\ ( A .x. X ) = C ) ) )