| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismndd.b |  | 
						
							| 2 |  | ismndd.p |  | 
						
							| 3 |  | ismndd.c |  | 
						
							| 4 |  | ismndd.a |  | 
						
							| 5 |  | ismndd.z |  | 
						
							| 6 |  | ismndd.i |  | 
						
							| 7 |  | ismndd.j |  | 
						
							| 8 | 3 | 3expb |  | 
						
							| 9 |  | simpll |  | 
						
							| 10 |  | simplrl |  | 
						
							| 11 |  | simplrr |  | 
						
							| 12 |  | simpr |  | 
						
							| 13 | 9 10 11 12 4 | syl13anc |  | 
						
							| 14 | 13 | ralrimiva |  | 
						
							| 15 | 8 14 | jca |  | 
						
							| 16 | 15 | ralrimivva |  | 
						
							| 17 | 2 | oveqd |  | 
						
							| 18 | 17 1 | eleq12d |  | 
						
							| 19 |  | eqidd |  | 
						
							| 20 | 2 17 19 | oveq123d |  | 
						
							| 21 |  | eqidd |  | 
						
							| 22 | 2 | oveqd |  | 
						
							| 23 | 2 21 22 | oveq123d |  | 
						
							| 24 | 20 23 | eqeq12d |  | 
						
							| 25 | 1 24 | raleqbidv |  | 
						
							| 26 | 18 25 | anbi12d |  | 
						
							| 27 | 1 26 | raleqbidv |  | 
						
							| 28 | 1 27 | raleqbidv |  | 
						
							| 29 | 16 28 | mpbid |  | 
						
							| 30 | 5 1 | eleqtrd |  | 
						
							| 31 | 1 | eleq2d |  | 
						
							| 32 | 31 | biimpar |  | 
						
							| 33 | 2 | adantr |  | 
						
							| 34 | 33 | oveqd |  | 
						
							| 35 | 34 6 | eqtr3d |  | 
						
							| 36 | 33 | oveqd |  | 
						
							| 37 | 36 7 | eqtr3d |  | 
						
							| 38 | 35 37 | jca |  | 
						
							| 39 | 32 38 | syldan |  | 
						
							| 40 | 39 | ralrimiva |  | 
						
							| 41 |  | oveq1 |  | 
						
							| 42 | 41 | eqeq1d |  | 
						
							| 43 | 42 | ovanraleqv |  | 
						
							| 44 | 43 | rspcev |  | 
						
							| 45 | 30 40 44 | syl2anc |  | 
						
							| 46 |  | eqid |  | 
						
							| 47 |  | eqid |  | 
						
							| 48 | 46 47 | ismnd |  | 
						
							| 49 | 29 45 48 | sylanbrc |  |