Metamath Proof Explorer


Theorem submid

Description: Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Hypothesis submss.b B=BaseM
Assertion submid MMndBSubMndM

Proof

Step Hyp Ref Expression
1 submss.b B=BaseM
2 ssidd MMndBB
3 eqid 0M=0M
4 1 3 mndidcl MMnd0MB
5 1 ressid MMndM𝑠B=M
6 id MMndMMnd
7 5 6 eqeltrd MMndM𝑠BMnd
8 eqid M𝑠B=M𝑠B
9 1 3 8 issubm2 MMndBSubMndMBB0MBM𝑠BMnd
10 2 4 7 9 mpbir3and MMndBSubMndM