Metamath Proof Explorer


Theorem mulginvinv

Description: The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 31-Aug-2021)

Ref Expression
Hypotheses mulginvcom.b B=BaseG
mulginvcom.t ·˙=G
mulginvcom.i I=invgG
Assertion mulginvinv GGrpNXBIN·˙IX=N·˙X

Proof

Step Hyp Ref Expression
1 mulginvcom.b B=BaseG
2 mulginvcom.t ·˙=G
3 mulginvcom.i I=invgG
4 1 3 grpinvcl GGrpXBIXB
5 4 3adant2 GGrpNXBIXB
6 1 2 3 mulginvcom GGrpNIXBN·˙IIX=IN·˙IX
7 5 6 syld3an3 GGrpNXBN·˙IIX=IN·˙IX
8 1 3 grpinvinv GGrpXBIIX=X
9 8 3adant2 GGrpNXBIIX=X
10 9 oveq2d GGrpNXBN·˙IIX=N·˙X
11 7 10 eqtr3d GGrpNXBIN·˙IX=N·˙X