| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulginvcom.b |  |-  B = ( Base ` G ) | 
						
							| 2 |  | mulginvcom.t |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | mulginvcom.i |  |-  I = ( invg ` G ) | 
						
							| 4 | 1 3 | grpinvcl |  |-  ( ( G e. Grp /\ X e. B ) -> ( I ` X ) e. B ) | 
						
							| 5 | 4 | 3adant2 |  |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` X ) e. B ) | 
						
							| 6 | 1 2 3 | mulginvcom |  |-  ( ( G e. Grp /\ N e. ZZ /\ ( I ` X ) e. B ) -> ( N .x. ( I ` ( I ` X ) ) ) = ( I ` ( N .x. ( I ` X ) ) ) ) | 
						
							| 7 | 5 6 | syld3an3 |  |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. ( I ` ( I ` X ) ) ) = ( I ` ( N .x. ( I ` X ) ) ) ) | 
						
							| 8 | 1 3 | grpinvinv |  |-  ( ( G e. Grp /\ X e. B ) -> ( I ` ( I ` X ) ) = X ) | 
						
							| 9 | 8 | 3adant2 |  |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( I ` X ) ) = X ) | 
						
							| 10 | 9 | oveq2d |  |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. ( I ` ( I ` X ) ) ) = ( N .x. X ) ) | 
						
							| 11 | 7 10 | eqtr3d |  |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( N .x. ( I ` X ) ) ) = ( N .x. X ) ) |