Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 4-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpinvcl.b | |- B = ( Base ` G ) |
|
grpinvcl.n | |- N = ( invg ` G ) |
||
Assertion | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinvcl.b | |- B = ( Base ` G ) |
|
2 | grpinvcl.n | |- N = ( invg ` G ) |
|
3 | 1 2 | grpinvf | |- ( G e. Grp -> N : B --> B ) |
4 | 3 | ffvelrnda | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |