Metamath Proof Explorer


Theorem grpinvcl

Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses grpinvcl.b
|- B = ( Base ` G )
grpinvcl.n
|- N = ( invg ` G )
Assertion grpinvcl
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B )

Proof

Step Hyp Ref Expression
1 grpinvcl.b
 |-  B = ( Base ` G )
2 grpinvcl.n
 |-  N = ( invg ` G )
3 1 2 grpinvf
 |-  ( G e. Grp -> N : B --> B )
4 3 ffvelrnda
 |-  ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B )