Metamath Proof Explorer


Theorem grpinvcl

Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses grpinvcl.b 𝐵 = ( Base ‘ 𝐺 )
grpinvcl.n 𝑁 = ( invg𝐺 )
Assertion grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁𝑋 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 grpinvcl.b 𝐵 = ( Base ‘ 𝐺 )
2 grpinvcl.n 𝑁 = ( invg𝐺 )
3 1 2 grpinvf ( 𝐺 ∈ Grp → 𝑁 : 𝐵𝐵 )
4 3 ffvelrnda ( ( 𝐺 ∈ Grp ∧ 𝑋𝐵 ) → ( 𝑁𝑋 ) ∈ 𝐵 )