Metamath Proof Explorer


Theorem grpinvcl

Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses grpinvcl.b B=BaseG
grpinvcl.n N=invgG
Assertion grpinvcl GGrpXBNXB

Proof

Step Hyp Ref Expression
1 grpinvcl.b B=BaseG
2 grpinvcl.n N=invgG
3 1 2 grpinvf GGrpN:BB
4 3 ffvelcdmda GGrpXBNXB