Metamath Proof Explorer


Theorem grpinvcl

Description: A group element's inverse is a group element. (Contributed by NM, 24-Aug-2011) (Revised by Mario Carneiro, 4-May-2015)

Ref Expression
Hypotheses grpinvcl.b B = Base G
grpinvcl.n N = inv g G
Assertion grpinvcl G Grp X B N X B

Proof

Step Hyp Ref Expression
1 grpinvcl.b B = Base G
2 grpinvcl.n N = inv g G
3 1 2 grpinvf G Grp N : B B
4 3 ffvelrnda G Grp X B N X B