Metamath Proof Explorer


Theorem grpinvcld

Description: A group element's inverse is a group element. (Contributed by SN, 29-Jan-2025)

Ref Expression
Hypotheses grpinvcld.b B=BaseG
grpinvcld.n N=invgG
grpinvcld.g φGGrp
grpinvcld.1 φXB
Assertion grpinvcld φNXB

Proof

Step Hyp Ref Expression
1 grpinvcld.b B=BaseG
2 grpinvcld.n N=invgG
3 grpinvcld.g φGGrp
4 grpinvcld.1 φXB
5 1 2 grpinvcl GGrpXBNXB
6 3 4 5 syl2anc φNXB