| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinvinv.b |
|- B = ( Base ` G ) |
| 2 |
|
grpinvinv.n |
|- N = ( invg ` G ) |
| 3 |
1 2
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 4 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 5 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 6 |
1 4 5 2
|
grprinv |
|- ( ( G e. Grp /\ ( N ` X ) e. B ) -> ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( 0g ` G ) ) |
| 7 |
3 6
|
syldan |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( 0g ` G ) ) |
| 8 |
1 4 5 2
|
grplinv |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) ( +g ` G ) X ) = ( 0g ` G ) ) |
| 9 |
7 8
|
eqtr4d |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( ( N ` X ) ( +g ` G ) X ) ) |
| 10 |
|
simpl |
|- ( ( G e. Grp /\ X e. B ) -> G e. Grp ) |
| 11 |
1 2
|
grpinvcl |
|- ( ( G e. Grp /\ ( N ` X ) e. B ) -> ( N ` ( N ` X ) ) e. B ) |
| 12 |
3 11
|
syldan |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) e. B ) |
| 13 |
|
simpr |
|- ( ( G e. Grp /\ X e. B ) -> X e. B ) |
| 14 |
1 4
|
grplcan |
|- ( ( G e. Grp /\ ( ( N ` ( N ` X ) ) e. B /\ X e. B /\ ( N ` X ) e. B ) ) -> ( ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( ( N ` X ) ( +g ` G ) X ) <-> ( N ` ( N ` X ) ) = X ) ) |
| 15 |
10 12 13 3 14
|
syl13anc |
|- ( ( G e. Grp /\ X e. B ) -> ( ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( ( N ` X ) ( +g ` G ) X ) <-> ( N ` ( N ` X ) ) = X ) ) |
| 16 |
9 15
|
mpbid |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |