| Step |
Hyp |
Ref |
Expression |
| 1 |
|
grpinv.b |
|- B = ( Base ` G ) |
| 2 |
|
grpinv.p |
|- .+ = ( +g ` G ) |
| 3 |
|
grpinv.u |
|- .0. = ( 0g ` G ) |
| 4 |
|
grpinv.n |
|- N = ( invg ` G ) |
| 5 |
1 2
|
grpcl |
|- ( ( G e. Grp /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B ) |
| 6 |
1 3
|
grpidcl |
|- ( G e. Grp -> .0. e. B ) |
| 7 |
1 2 3
|
grplid |
|- ( ( G e. Grp /\ x e. B ) -> ( .0. .+ x ) = x ) |
| 8 |
1 2
|
grpass |
|- ( ( G e. Grp /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) ) |
| 9 |
1 2 3
|
grpinvex |
|- ( ( G e. Grp /\ x e. B ) -> E. y e. B ( y .+ x ) = .0. ) |
| 10 |
|
simpr |
|- ( ( G e. Grp /\ X e. B ) -> X e. B ) |
| 11 |
1 4
|
grpinvcl |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 12 |
1 2 3 4
|
grplinv |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ X ) = .0. ) |
| 13 |
5 6 7 8 9 10 11 12
|
grpinva |
|- ( ( G e. Grp /\ X e. B ) -> ( X .+ ( N ` X ) ) = .0. ) |