Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.b |
|- B = ( Base ` G ) |
2 |
|
grpinv.p |
|- .+ = ( +g ` G ) |
3 |
|
grpinv.u |
|- .0. = ( 0g ` G ) |
4 |
|
grpinv.n |
|- N = ( invg ` G ) |
5 |
1 2 3 4
|
grpinvval |
|- ( X e. B -> ( N ` X ) = ( iota_ y e. B ( y .+ X ) = .0. ) ) |
6 |
5
|
adantl |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) = ( iota_ y e. B ( y .+ X ) = .0. ) ) |
7 |
1 2 3
|
grpinveu |
|- ( ( G e. Grp /\ X e. B ) -> E! y e. B ( y .+ X ) = .0. ) |
8 |
|
riotacl2 |
|- ( E! y e. B ( y .+ X ) = .0. -> ( iota_ y e. B ( y .+ X ) = .0. ) e. { y e. B | ( y .+ X ) = .0. } ) |
9 |
7 8
|
syl |
|- ( ( G e. Grp /\ X e. B ) -> ( iota_ y e. B ( y .+ X ) = .0. ) e. { y e. B | ( y .+ X ) = .0. } ) |
10 |
6 9
|
eqeltrd |
|- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. { y e. B | ( y .+ X ) = .0. } ) |
11 |
|
oveq1 |
|- ( y = ( N ` X ) -> ( y .+ X ) = ( ( N ` X ) .+ X ) ) |
12 |
11
|
eqeq1d |
|- ( y = ( N ` X ) -> ( ( y .+ X ) = .0. <-> ( ( N ` X ) .+ X ) = .0. ) ) |
13 |
12
|
elrab |
|- ( ( N ` X ) e. { y e. B | ( y .+ X ) = .0. } <-> ( ( N ` X ) e. B /\ ( ( N ` X ) .+ X ) = .0. ) ) |
14 |
13
|
simprbi |
|- ( ( N ` X ) e. { y e. B | ( y .+ X ) = .0. } -> ( ( N ` X ) .+ X ) = .0. ) |
15 |
10 14
|
syl |
|- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) .+ X ) = .0. ) |