Step |
Hyp |
Ref |
Expression |
1 |
|
grpinv.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
grpinv.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
grpinv.u |
⊢ 0 = ( 0g ‘ 𝐺 ) |
4 |
|
grpinv.n |
⊢ 𝑁 = ( invg ‘ 𝐺 ) |
5 |
1 2 3 4
|
grpinvval |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) = ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ) |
7 |
1 2 3
|
grpinveu |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) |
8 |
|
riotacl2 |
⊢ ( ∃! 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } ) |
9 |
7 8
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ℩ 𝑦 ∈ 𝐵 ( 𝑦 + 𝑋 ) = 0 ) ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } ) |
10 |
6 9
|
eqeltrd |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑋 ) ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } ) |
11 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑁 ‘ 𝑋 ) → ( 𝑦 + 𝑋 ) = ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑦 = ( 𝑁 ‘ 𝑋 ) → ( ( 𝑦 + 𝑋 ) = 0 ↔ ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) ) |
13 |
12
|
elrab |
⊢ ( ( 𝑁 ‘ 𝑋 ) ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } ↔ ( ( 𝑁 ‘ 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) ) |
14 |
13
|
simprbi |
⊢ ( ( 𝑁 ‘ 𝑋 ) ∈ { 𝑦 ∈ 𝐵 ∣ ( 𝑦 + 𝑋 ) = 0 } → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |
15 |
10 14
|
syl |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) + 𝑋 ) = 0 ) |