| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpinva.c | 
							 |-  ( ( ph /\ x e. B /\ y e. B ) -> ( x .+ y ) e. B )  | 
						
						
							| 2 | 
							
								
							 | 
							grpinva.o | 
							 |-  ( ph -> O e. B )  | 
						
						
							| 3 | 
							
								
							 | 
							grpinva.i | 
							 |-  ( ( ph /\ x e. B ) -> ( O .+ x ) = x )  | 
						
						
							| 4 | 
							
								
							 | 
							grpinva.a | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B /\ z e. B ) ) -> ( ( x .+ y ) .+ z ) = ( x .+ ( y .+ z ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							grpinva.r | 
							 |-  ( ( ph /\ x e. B ) -> E. y e. B ( y .+ x ) = O )  | 
						
						
							| 6 | 
							
								
							 | 
							grpinva.x | 
							 |-  ( ( ph /\ ps ) -> X e. B )  | 
						
						
							| 7 | 
							
								
							 | 
							grpinva.n | 
							 |-  ( ( ph /\ ps ) -> N e. B )  | 
						
						
							| 8 | 
							
								
							 | 
							grpinva.e | 
							 |-  ( ( ph /\ ps ) -> ( N .+ X ) = O )  | 
						
						
							| 9 | 
							
								1
							 | 
							3expb | 
							 |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B )  | 
						
						
							| 10 | 
							
								9
							 | 
							caovclg | 
							 |-  ( ( ph /\ ( u e. B /\ v e. B ) ) -> ( u .+ v ) e. B )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ ps ) /\ ( u e. B /\ v e. B ) ) -> ( u .+ v ) e. B )  | 
						
						
							| 12 | 
							
								11 6 7
							 | 
							caovcld | 
							 |-  ( ( ph /\ ps ) -> ( X .+ N ) e. B )  | 
						
						
							| 13 | 
							
								4
							 | 
							caovassg | 
							 |-  ( ( ph /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u .+ v ) .+ w ) = ( u .+ ( v .+ w ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ ps ) /\ ( u e. B /\ v e. B /\ w e. B ) ) -> ( ( u .+ v ) .+ w ) = ( u .+ ( v .+ w ) ) )  | 
						
						
							| 15 | 
							
								14 6 7 12
							 | 
							caovassd | 
							 |-  ( ( ph /\ ps ) -> ( ( X .+ N ) .+ ( X .+ N ) ) = ( X .+ ( N .+ ( X .+ N ) ) ) )  | 
						
						
							| 16 | 
							
								8
							 | 
							oveq1d | 
							 |-  ( ( ph /\ ps ) -> ( ( N .+ X ) .+ N ) = ( O .+ N ) )  | 
						
						
							| 17 | 
							
								14 7 6 7
							 | 
							caovassd | 
							 |-  ( ( ph /\ ps ) -> ( ( N .+ X ) .+ N ) = ( N .+ ( X .+ N ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							oveq2 | 
							 |-  ( y = N -> ( O .+ y ) = ( O .+ N ) )  | 
						
						
							| 19 | 
							
								
							 | 
							id | 
							 |-  ( y = N -> y = N )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							eqeq12d | 
							 |-  ( y = N -> ( ( O .+ y ) = y <-> ( O .+ N ) = N ) )  | 
						
						
							| 21 | 
							
								3
							 | 
							ralrimiva | 
							 |-  ( ph -> A. x e. B ( O .+ x ) = x )  | 
						
						
							| 22 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = y -> ( O .+ x ) = ( O .+ y ) )  | 
						
						
							| 23 | 
							
								
							 | 
							id | 
							 |-  ( x = y -> x = y )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							eqeq12d | 
							 |-  ( x = y -> ( ( O .+ x ) = x <-> ( O .+ y ) = y ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							cbvralvw | 
							 |-  ( A. x e. B ( O .+ x ) = x <-> A. y e. B ( O .+ y ) = y )  | 
						
						
							| 26 | 
							
								21 25
							 | 
							sylib | 
							 |-  ( ph -> A. y e. B ( O .+ y ) = y )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantr | 
							 |-  ( ( ph /\ ps ) -> A. y e. B ( O .+ y ) = y )  | 
						
						
							| 28 | 
							
								20 27 7
							 | 
							rspcdva | 
							 |-  ( ( ph /\ ps ) -> ( O .+ N ) = N )  | 
						
						
							| 29 | 
							
								16 17 28
							 | 
							3eqtr3d | 
							 |-  ( ( ph /\ ps ) -> ( N .+ ( X .+ N ) ) = N )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq2d | 
							 |-  ( ( ph /\ ps ) -> ( X .+ ( N .+ ( X .+ N ) ) ) = ( X .+ N ) )  | 
						
						
							| 31 | 
							
								15 30
							 | 
							eqtrd | 
							 |-  ( ( ph /\ ps ) -> ( ( X .+ N ) .+ ( X .+ N ) ) = ( X .+ N ) )  | 
						
						
							| 32 | 
							
								1 2 3 4 5 12 31
							 | 
							grpinvalem | 
							 |-  ( ( ph /\ ps ) -> ( X .+ N ) = O )  |