Description: Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013) (Proof shortened by Mario Carneiro, 6-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grprinvlem.c | |
|
grprinvlem.o | |
||
grprinvlem.i | |
||
grprinvlem.a | |
||
grprinvlem.n | |
||
grpinva.x | |
||
grpinva.n | |
||
grpinva.e | |
||
Assertion | grpinva | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grprinvlem.c | |
|
2 | grprinvlem.o | |
|
3 | grprinvlem.i | |
|
4 | grprinvlem.a | |
|
5 | grprinvlem.n | |
|
6 | grpinva.x | |
|
7 | grpinva.n | |
|
8 | grpinva.e | |
|
9 | 1 | 3expb | |
10 | 9 | caovclg | |
11 | 10 | adantlr | |
12 | 11 6 7 | caovcld | |
13 | 4 | caovassg | |
14 | 13 | adantlr | |
15 | 14 6 7 12 | caovassd | |
16 | 8 | oveq1d | |
17 | 14 7 6 7 | caovassd | |
18 | oveq2 | |
|
19 | id | |
|
20 | 18 19 | eqeq12d | |
21 | 3 | ralrimiva | |
22 | oveq2 | |
|
23 | id | |
|
24 | 22 23 | eqeq12d | |
25 | 24 | cbvralvw | |
26 | 21 25 | sylib | |
27 | 26 | adantr | |
28 | 20 27 7 | rspcdva | |
29 | 16 17 28 | 3eqtr3d | |
30 | 29 | oveq2d | |
31 | 15 30 | eqtrd | |
32 | 1 2 3 4 5 12 31 | grprinvlem | |