Metamath Proof Explorer


Theorem grpinva

Description: Deduce right inverse from left inverse and left identity in an associative structure (such as a group). (Contributed by NM, 10-Aug-2013) (Proof shortened by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses grprinvlem.c φxByBx+˙yB
grprinvlem.o φOB
grprinvlem.i φxBO+˙x=x
grprinvlem.a φxByBzBx+˙y+˙z=x+˙y+˙z
grprinvlem.n φxByBy+˙x=O
grpinva.x φψXB
grpinva.n φψNB
grpinva.e φψN+˙X=O
Assertion grpinva φψX+˙N=O

Proof

Step Hyp Ref Expression
1 grprinvlem.c φxByBx+˙yB
2 grprinvlem.o φOB
3 grprinvlem.i φxBO+˙x=x
4 grprinvlem.a φxByBzBx+˙y+˙z=x+˙y+˙z
5 grprinvlem.n φxByBy+˙x=O
6 grpinva.x φψXB
7 grpinva.n φψNB
8 grpinva.e φψN+˙X=O
9 1 3expb φxByBx+˙yB
10 9 caovclg φuBvBu+˙vB
11 10 adantlr φψuBvBu+˙vB
12 11 6 7 caovcld φψX+˙NB
13 4 caovassg φuBvBwBu+˙v+˙w=u+˙v+˙w
14 13 adantlr φψuBvBwBu+˙v+˙w=u+˙v+˙w
15 14 6 7 12 caovassd φψX+˙N+˙X+˙N=X+˙N+˙X+˙N
16 8 oveq1d φψN+˙X+˙N=O+˙N
17 14 7 6 7 caovassd φψN+˙X+˙N=N+˙X+˙N
18 oveq2 y=NO+˙y=O+˙N
19 id y=Ny=N
20 18 19 eqeq12d y=NO+˙y=yO+˙N=N
21 3 ralrimiva φxBO+˙x=x
22 oveq2 x=yO+˙x=O+˙y
23 id x=yx=y
24 22 23 eqeq12d x=yO+˙x=xO+˙y=y
25 24 cbvralvw xBO+˙x=xyBO+˙y=y
26 21 25 sylib φyBO+˙y=y
27 26 adantr φψyBO+˙y=y
28 20 27 7 rspcdva φψO+˙N=N
29 16 17 28 3eqtr3d φψN+˙X+˙N=N
30 29 oveq2d φψX+˙N+˙X+˙N=X+˙N
31 15 30 eqtrd φψX+˙N+˙X+˙N=X+˙N
32 1 2 3 4 5 12 31 grprinvlem φψX+˙N=O