Metamath Proof Explorer


Theorem caovassd

Description: Convert an operation associative law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)

Ref Expression
Hypotheses caovassg.1 φxSySzSxFyFz=xFyFz
caovassd.2 φAS
caovassd.3 φBS
caovassd.4 φCS
Assertion caovassd φAFBFC=AFBFC

Proof

Step Hyp Ref Expression
1 caovassg.1 φxSySzSxFyFz=xFyFz
2 caovassd.2 φAS
3 caovassd.3 φBS
4 caovassd.4 φCS
5 id φφ
6 1 caovassg φASBSCSAFBFC=AFBFC
7 5 2 3 4 6 syl13anc φAFBFC=AFBFC