| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpinva.c | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							grpinva.o | 
							⊢ ( 𝜑  →  𝑂  ∈  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							grpinva.i | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑂  +  𝑥 )  =  𝑥 )  | 
						
						
							| 4 | 
							
								
							 | 
							grpinva.a | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							grpinva.r | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∃ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =  𝑂 )  | 
						
						
							| 6 | 
							
								
							 | 
							grpinva.x | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								
							 | 
							grpinva.n | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑁  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							grpinva.e | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑁  +  𝑋 )  =  𝑂 )  | 
						
						
							| 9 | 
							
								1
							 | 
							3expb | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 )  | 
						
						
							| 10 | 
							
								9
							 | 
							caovclg | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  ( 𝑢  +  𝑣 )  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵 ) )  →  ( 𝑢  +  𝑣 )  ∈  𝐵 )  | 
						
						
							| 12 | 
							
								11 6 7
							 | 
							caovcld | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑋  +  𝑁 )  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								4
							 | 
							caovassg | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢  +  𝑣 )  +  𝑤 )  =  ( 𝑢  +  ( 𝑣  +  𝑤 ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢  +  𝑣 )  +  𝑤 )  =  ( 𝑢  +  ( 𝑣  +  𝑤 ) ) )  | 
						
						
							| 15 | 
							
								14 6 7 12
							 | 
							caovassd | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑋  +  𝑁 )  +  ( 𝑋  +  𝑁 ) )  =  ( 𝑋  +  ( 𝑁  +  ( 𝑋  +  𝑁 ) ) ) )  | 
						
						
							| 16 | 
							
								8
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑁  +  𝑋 )  +  𝑁 )  =  ( 𝑂  +  𝑁 ) )  | 
						
						
							| 17 | 
							
								14 7 6 7
							 | 
							caovassd | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑁  +  𝑋 )  +  𝑁 )  =  ( 𝑁  +  ( 𝑋  +  𝑁 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑦  =  𝑁  →  ( 𝑂  +  𝑦 )  =  ( 𝑂  +  𝑁 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							id | 
							⊢ ( 𝑦  =  𝑁  →  𝑦  =  𝑁 )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							eqeq12d | 
							⊢ ( 𝑦  =  𝑁  →  ( ( 𝑂  +  𝑦 )  =  𝑦  ↔  ( 𝑂  +  𝑁 )  =  𝑁 ) )  | 
						
						
							| 21 | 
							
								3
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ( 𝑂  +  𝑥 )  =  𝑥 )  | 
						
						
							| 22 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  𝑦  →  ( 𝑂  +  𝑥 )  =  ( 𝑂  +  𝑦 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝑦  →  𝑥  =  𝑦 )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  𝑦  →  ( ( 𝑂  +  𝑥 )  =  𝑥  ↔  ( 𝑂  +  𝑦 )  =  𝑦 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							cbvralvw | 
							⊢ ( ∀ 𝑥  ∈  𝐵 ( 𝑂  +  𝑥 )  =  𝑥  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑂  +  𝑦 )  =  𝑦 )  | 
						
						
							| 26 | 
							
								21 25
							 | 
							sylib | 
							⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝐵 ( 𝑂  +  𝑦 )  =  𝑦 )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ∀ 𝑦  ∈  𝐵 ( 𝑂  +  𝑦 )  =  𝑦 )  | 
						
						
							| 28 | 
							
								20 27 7
							 | 
							rspcdva | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑂  +  𝑁 )  =  𝑁 )  | 
						
						
							| 29 | 
							
								16 17 28
							 | 
							3eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑁  +  ( 𝑋  +  𝑁 ) )  =  𝑁 )  | 
						
						
							| 30 | 
							
								29
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑋  +  ( 𝑁  +  ( 𝑋  +  𝑁 ) ) )  =  ( 𝑋  +  𝑁 ) )  | 
						
						
							| 31 | 
							
								15 30
							 | 
							eqtrd | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑋  +  𝑁 )  +  ( 𝑋  +  𝑁 ) )  =  ( 𝑋  +  𝑁 ) )  | 
						
						
							| 32 | 
							
								1 2 3 4 5 12 31
							 | 
							grpinvalem | 
							⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑋  +  𝑁 )  =  𝑂 )  |