| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpinva.c | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 )  | 
						
						
							| 2 | 
							
								
							 | 
							grpinva.o | 
							⊢ ( 𝜑  →  𝑂  ∈  𝐵 )  | 
						
						
							| 3 | 
							
								
							 | 
							grpinva.i | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑂  +  𝑥 )  =  𝑥 )  | 
						
						
							| 4 | 
							
								
							 | 
							grpinva.a | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							grpinva.r | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∃ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =  𝑂 )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑦  =  𝑛  →  ( 𝑦  +  𝑥 )  =  ( 𝑛  +  𝑥 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq1d | 
							⊢ ( 𝑦  =  𝑛  →  ( ( 𝑦  +  𝑥 )  =  𝑂  ↔  ( 𝑛  +  𝑥 )  =  𝑂 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							cbvrexvw | 
							⊢ ( ∃ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =  𝑂  ↔  ∃ 𝑛  ∈  𝐵 ( 𝑛  +  𝑥 )  =  𝑂 )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ∃ 𝑛  ∈  𝐵 ( 𝑛  +  𝑥 )  =  𝑂 )  | 
						
						
							| 10 | 
							
								4
							 | 
							caovassg | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢  +  𝑣 )  +  𝑤 )  =  ( 𝑢  +  ( 𝑣  +  𝑤 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑛  ∈  𝐵  ∧  ( 𝑛  +  𝑥 )  =  𝑂 ) ) )  ∧  ( 𝑢  ∈  𝐵  ∧  𝑣  ∈  𝐵  ∧  𝑤  ∈  𝐵 ) )  →  ( ( 𝑢  +  𝑣 )  +  𝑤 )  =  ( 𝑢  +  ( 𝑣  +  𝑤 ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑛  ∈  𝐵  ∧  ( 𝑛  +  𝑥 )  =  𝑂 ) ) )  →  𝑥  ∈  𝐵 )  | 
						
						
							| 13 | 
							
								
							 | 
							simprrl | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑛  ∈  𝐵  ∧  ( 𝑛  +  𝑥 )  =  𝑂 ) ) )  →  𝑛  ∈  𝐵 )  | 
						
						
							| 14 | 
							
								11 12 13 12
							 | 
							caovassd | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑛  ∈  𝐵  ∧  ( 𝑛  +  𝑥 )  =  𝑂 ) ) )  →  ( ( 𝑥  +  𝑛 )  +  𝑥 )  =  ( 𝑥  +  ( 𝑛  +  𝑥 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simprrr | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑛  ∈  𝐵  ∧  ( 𝑛  +  𝑥 )  =  𝑂 ) ) )  →  ( 𝑛  +  𝑥 )  =  𝑂 )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 12 13 15
							 | 
							grpinva | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑛  ∈  𝐵  ∧  ( 𝑛  +  𝑥 )  =  𝑂 ) ) )  →  ( 𝑥  +  𝑛 )  =  𝑂 )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑛  ∈  𝐵  ∧  ( 𝑛  +  𝑥 )  =  𝑂 ) ) )  →  ( ( 𝑥  +  𝑛 )  +  𝑥 )  =  ( 𝑂  +  𝑥 ) )  | 
						
						
							| 18 | 
							
								15
							 | 
							oveq2d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑛  ∈  𝐵  ∧  ( 𝑛  +  𝑥 )  =  𝑂 ) ) )  →  ( 𝑥  +  ( 𝑛  +  𝑥 ) )  =  ( 𝑥  +  𝑂 ) )  | 
						
						
							| 19 | 
							
								14 17 18
							 | 
							3eqtr3d | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  ( 𝑛  ∈  𝐵  ∧  ( 𝑛  +  𝑥 )  =  𝑂 ) ) )  →  ( 𝑂  +  𝑥 )  =  ( 𝑥  +  𝑂 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							anassrs | 
							⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  ∧  ( 𝑛  ∈  𝐵  ∧  ( 𝑛  +  𝑥 )  =  𝑂 ) )  →  ( 𝑂  +  𝑥 )  =  ( 𝑥  +  𝑂 ) )  | 
						
						
							| 21 | 
							
								9 20
							 | 
							rexlimddv | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑂  +  𝑥 )  =  ( 𝑥  +  𝑂 ) )  | 
						
						
							| 22 | 
							
								21 3
							 | 
							eqtr3d | 
							⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐵 )  →  ( 𝑥  +  𝑂 )  =  𝑥 )  |