Description: A group operation is associative. (Contributed by NM, 14-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | grpcl.b | |- B = ( Base ` G ) |
|
grpcl.p | |- .+ = ( +g ` G ) |
||
Assertion | grpass | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpcl.b | |- B = ( Base ` G ) |
|
2 | grpcl.p | |- .+ = ( +g ` G ) |
|
3 | grpmnd | |- ( G e. Grp -> G e. Mnd ) |
|
4 | 1 2 | mndass | |- ( ( G e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |
5 | 3 4 | sylan | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) ) |