Metamath Proof Explorer


Theorem grpass

Description: A group operation is associative. (Contributed by NM, 14-Aug-2011)

Ref Expression
Hypotheses grpcl.b
|- B = ( Base ` G )
grpcl.p
|- .+ = ( +g ` G )
Assertion grpass
|- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )

Proof

Step Hyp Ref Expression
1 grpcl.b
 |-  B = ( Base ` G )
2 grpcl.p
 |-  .+ = ( +g ` G )
3 grpmnd
 |-  ( G e. Grp -> G e. Mnd )
4 1 2 mndass
 |-  ( ( G e. Mnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )
5 3 4 sylan
 |-  ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )