Metamath Proof Explorer
		
		
		
		Description:  A group operation is associative.  (Contributed by NM, 14-Aug-2011)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						grpcl.b | 
						⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						grpcl.p | 
						⊢  +   =  ( +g ‘ 𝐺 )  | 
					
				
					 | 
					Assertion | 
					grpass | 
					⊢  ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( 𝑋  +  ( 𝑌  +  𝑍 ) ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpcl.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							grpcl.p | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							grpmnd | 
							⊢ ( 𝐺  ∈  Grp  →  𝐺  ∈  Mnd )  | 
						
						
							| 4 | 
							
								1 2
							 | 
							mndass | 
							⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( 𝑋  +  ( 𝑌  +  𝑍 ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylan | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( 𝑋  +  ( 𝑌  +  𝑍 ) ) )  |