| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpcl.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							grpcl.p | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							grpinvex.p | 
							⊢  0   =  ( 0g ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							isgrp | 
							⊢ ( 𝐺  ∈  Grp  ↔  ( 𝐺  ∈  Mnd  ∧  ∀ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							simprbi | 
							⊢ ( 𝐺  ∈  Grp  →  ∀ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0  )  | 
						
						
							| 6 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑥  =  𝑋  →  ( 𝑦  +  𝑥 )  =  ( 𝑦  +  𝑋 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							eqeq1d | 
							⊢ ( 𝑥  =  𝑋  →  ( ( 𝑦  +  𝑥 )  =   0   ↔  ( 𝑦  +  𝑋 )  =   0  ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rexbidv | 
							⊢ ( 𝑥  =  𝑋  →  ( ∃ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0   ↔  ∃ 𝑦  ∈  𝐵 ( 𝑦  +  𝑋 )  =   0  ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( 𝑦  +  𝑥 )  =   0   ∧  𝑋  ∈  𝐵 )  →  ∃ 𝑦  ∈  𝐵 ( 𝑦  +  𝑋 )  =   0  )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							sylan | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  𝑋  ∈  𝐵 )  →  ∃ 𝑦  ∈  𝐵 ( 𝑦  +  𝑋 )  =   0  )  |