Database  
				BASIC ALGEBRAIC STRUCTURES  
				Groups  
				Definition and basic properties  
				grpideu  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   The two-sided identity element of a group is unique.  Lemma 2.2.1(a) of
       Herstein  p. 55.  (Contributed by NM , 16-Aug-2011)   (Revised by Mario
       Carneiro , 8-Dec-2014) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						grpcl.b  
						⊢  𝐵   =  ( Base ‘ 𝐺  )  
					 
					
						 
						 
						grpcl.p  
						⊢   +    =  ( +g  ‘ 𝐺  )  
					 
					
						 
						 
						grpinvex.p  
						⊢   0    =  ( 0g  ‘ 𝐺  )  
					 
				
					 
					Assertion 
					grpideu  
					⊢   ( 𝐺   ∈  Grp  →  ∃! 𝑢   ∈  𝐵  ∀ 𝑥   ∈  𝐵  ( ( 𝑢   +   𝑥  )  =  𝑥   ∧  ( 𝑥   +   𝑢  )  =  𝑥  ) )  
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							grpcl.b  
							⊢  𝐵   =  ( Base ‘ 𝐺  )  
						 
						
							2  
							
								
							 
							grpcl.p  
							⊢   +    =  ( +g  ‘ 𝐺  )  
						 
						
							3  
							
								
							 
							grpinvex.p  
							⊢   0    =  ( 0g  ‘ 𝐺  )  
						 
						
							4  
							
								
							 
							grpmnd  
							⊢  ( 𝐺   ∈  Grp  →  𝐺   ∈  Mnd )  
						 
						
							5  
							
								1  2 
							 
							mndideu  
							⊢  ( 𝐺   ∈  Mnd  →  ∃! 𝑢   ∈  𝐵  ∀ 𝑥   ∈  𝐵  ( ( 𝑢   +   𝑥  )  =  𝑥   ∧  ( 𝑥   +   𝑢  )  =  𝑥  ) )  
						 
						
							6  
							
								4  5 
							 
							syl  
							⊢  ( 𝐺   ∈  Grp  →  ∃! 𝑢   ∈  𝐵  ∀ 𝑥   ∈  𝐵  ( ( 𝑢   +   𝑥  )  =  𝑥   ∧  ( 𝑥   +   𝑢  )  =  𝑥  ) )