Metamath Proof Explorer
		
		
		
		Description:  A group operation is associative.  (Contributed by SN, 29-Jan-2025)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						grpassd.b | 
						⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						grpassd.p | 
						⊢  +   =  ( +g ‘ 𝐺 )  | 
					
					
						 | 
						 | 
						grpassd.g | 
						⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
					
					
						 | 
						 | 
						grpassd.1 | 
						⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
					
					
						 | 
						 | 
						grpassd.2 | 
						⊢ ( 𝜑  →  𝑌  ∈  𝐵 )  | 
					
					
						 | 
						 | 
						grpassd.3 | 
						⊢ ( 𝜑  →  𝑍  ∈  𝐵 )  | 
					
				
					 | 
					Assertion | 
					grpassd | 
					⊢  ( 𝜑  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( 𝑋  +  ( 𝑌  +  𝑍 ) ) )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							grpassd.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							grpassd.p | 
							⊢  +   =  ( +g ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							grpassd.g | 
							⊢ ( 𝜑  →  𝐺  ∈  Grp )  | 
						
						
							| 4 | 
							
								
							 | 
							grpassd.1 | 
							⊢ ( 𝜑  →  𝑋  ∈  𝐵 )  | 
						
						
							| 5 | 
							
								
							 | 
							grpassd.2 | 
							⊢ ( 𝜑  →  𝑌  ∈  𝐵 )  | 
						
						
							| 6 | 
							
								
							 | 
							grpassd.3 | 
							⊢ ( 𝜑  →  𝑍  ∈  𝐵 )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							grpass | 
							⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( 𝑋  +  ( 𝑌  +  𝑍 ) ) )  | 
						
						
							| 8 | 
							
								3 4 5 6 7
							 | 
							syl13anc | 
							⊢ ( 𝜑  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( 𝑋  +  ( 𝑌  +  𝑍 ) ) )  |