Metamath Proof Explorer


Theorem grpinvex

Description: Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015)

Ref Expression
Hypotheses grpcl.b B = Base G
grpcl.p + ˙ = + G
grpinvex.p 0 ˙ = 0 G
Assertion grpinvex G Grp X B y B y + ˙ X = 0 ˙

Proof

Step Hyp Ref Expression
1 grpcl.b B = Base G
2 grpcl.p + ˙ = + G
3 grpinvex.p 0 ˙ = 0 G
4 1 2 3 isgrp G Grp G Mnd x B y B y + ˙ x = 0 ˙
5 4 simprbi G Grp x B y B y + ˙ x = 0 ˙
6 oveq2 x = X y + ˙ x = y + ˙ X
7 6 eqeq1d x = X y + ˙ x = 0 ˙ y + ˙ X = 0 ˙
8 7 rexbidv x = X y B y + ˙ x = 0 ˙ y B y + ˙ X = 0 ˙
9 8 rspccva x B y B y + ˙ x = 0 ˙ X B y B y + ˙ X = 0 ˙
10 5 9 sylan G Grp X B y B y + ˙ X = 0 ˙