Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mulgnn0z.b | |
|
mulgnn0z.t | |
||
mulgnn0z.o | |
||
Assertion | mulgnn0z | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulgnn0z.b | |
|
2 | mulgnn0z.t | |
|
3 | mulgnn0z.o | |
|
4 | elnn0 | |
|
5 | id | |
|
6 | 1 3 | mndidcl | |
7 | eqid | |
|
8 | eqid | |
|
9 | 1 7 2 8 | mulgnn | |
10 | 5 6 9 | syl2anr | |
11 | 1 7 3 | mndlid | |
12 | 6 11 | mpdan | |
13 | 12 | adantr | |
14 | simpr | |
|
15 | nnuz | |
|
16 | 14 15 | eleqtrdi | |
17 | 6 | adantr | |
18 | elfznn | |
|
19 | fvconst2g | |
|
20 | 17 18 19 | syl2an | |
21 | 13 16 20 | seqid3 | |
22 | 10 21 | eqtrd | |
23 | oveq1 | |
|
24 | 1 3 2 | mulg0 | |
25 | 6 24 | syl | |
26 | 23 25 | sylan9eqr | |
27 | 22 26 | jaodan | |
28 | 4 27 | sylan2b | |