Metamath Proof Explorer


Theorem mulgnn0z

Description: A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014)

Ref Expression
Hypotheses mulgnn0z.b B=BaseG
mulgnn0z.t ·˙=G
mulgnn0z.o 0˙=0G
Assertion mulgnn0z GMndN0N·˙0˙=0˙

Proof

Step Hyp Ref Expression
1 mulgnn0z.b B=BaseG
2 mulgnn0z.t ·˙=G
3 mulgnn0z.o 0˙=0G
4 elnn0 N0NN=0
5 id NN
6 1 3 mndidcl GMnd0˙B
7 eqid +G=+G
8 eqid seq1+G×0˙=seq1+G×0˙
9 1 7 2 8 mulgnn N0˙BN·˙0˙=seq1+G×0˙N
10 5 6 9 syl2anr GMndNN·˙0˙=seq1+G×0˙N
11 1 7 3 mndlid GMnd0˙B0˙+G0˙=0˙
12 6 11 mpdan GMnd0˙+G0˙=0˙
13 12 adantr GMndN0˙+G0˙=0˙
14 simpr GMndNN
15 nnuz =1
16 14 15 eleqtrdi GMndNN1
17 6 adantr GMndN0˙B
18 elfznn x1Nx
19 fvconst2g 0˙Bx×0˙x=0˙
20 17 18 19 syl2an GMndNx1N×0˙x=0˙
21 13 16 20 seqid3 GMndNseq1+G×0˙N=0˙
22 10 21 eqtrd GMndNN·˙0˙=0˙
23 oveq1 N=0N·˙0˙=0·˙0˙
24 1 3 2 mulg0 0˙B0·˙0˙=0˙
25 6 24 syl GMnd0·˙0˙=0˙
26 23 25 sylan9eqr GMndN=0N·˙0˙=0˙
27 22 26 jaodan GMndNN=0N·˙0˙=0˙
28 4 27 sylan2b GMndN0N·˙0˙=0˙