| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mulgnn0z.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mulgnn0z.t |
⊢ · = ( .g ‘ 𝐺 ) |
| 3 |
|
mulgnn0z.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 4 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 5 |
|
id |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ ) |
| 6 |
1 3
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 7 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 8 |
|
eqid |
⊢ seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 0 } ) ) = seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 0 } ) ) |
| 9 |
1 7 2 8
|
mulgnn |
⊢ ( ( 𝑁 ∈ ℕ ∧ 0 ∈ 𝐵 ) → ( 𝑁 · 0 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 0 } ) ) ‘ 𝑁 ) ) |
| 10 |
5 6 9
|
syl2anr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 0 ) = ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 0 } ) ) ‘ 𝑁 ) ) |
| 11 |
1 7 3
|
mndlid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 0 ∈ 𝐵 ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 12 |
6 11
|
mpdan |
⊢ ( 𝐺 ∈ Mnd → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( 0 ( +g ‘ 𝐺 ) 0 ) = 0 ) |
| 14 |
|
simpr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) |
| 15 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 16 |
14 15
|
eleqtrdi |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 17 |
6
|
adantr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → 0 ∈ 𝐵 ) |
| 18 |
|
elfznn |
⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ∈ ℕ ) |
| 19 |
|
fvconst2g |
⊢ ( ( 0 ∈ 𝐵 ∧ 𝑥 ∈ ℕ ) → ( ( ℕ × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 20 |
17 18 19
|
syl2an |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 21 |
13 16 20
|
seqid3 |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( ( +g ‘ 𝐺 ) , ( ℕ × { 0 } ) ) ‘ 𝑁 ) = 0 ) |
| 22 |
10 21
|
eqtrd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · 0 ) = 0 ) |
| 23 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 · 0 ) = ( 0 · 0 ) ) |
| 24 |
1 3 2
|
mulg0 |
⊢ ( 0 ∈ 𝐵 → ( 0 · 0 ) = 0 ) |
| 25 |
6 24
|
syl |
⊢ ( 𝐺 ∈ Mnd → ( 0 · 0 ) = 0 ) |
| 26 |
23 25
|
sylan9eqr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 = 0 ) → ( 𝑁 · 0 ) = 0 ) |
| 27 |
22 26
|
jaodan |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) → ( 𝑁 · 0 ) = 0 ) |
| 28 |
4 27
|
sylan2b |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 0 ) = 0 ) |