Metamath Proof Explorer


Theorem mulg0

Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014)

Ref Expression
Hypotheses mulg0.b 𝐵 = ( Base ‘ 𝐺 )
mulg0.o 0 = ( 0g𝐺 )
mulg0.t · = ( .g𝐺 )
Assertion mulg0 ( 𝑋𝐵 → ( 0 · 𝑋 ) = 0 )

Proof

Step Hyp Ref Expression
1 mulg0.b 𝐵 = ( Base ‘ 𝐺 )
2 mulg0.o 0 = ( 0g𝐺 )
3 mulg0.t · = ( .g𝐺 )
4 0z 0 ∈ ℤ
5 eqid ( +g𝐺 ) = ( +g𝐺 )
6 eqid ( invg𝐺 ) = ( invg𝐺 )
7 eqid seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) = seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) )
8 1 5 2 6 3 7 mulgval ( ( 0 ∈ ℤ ∧ 𝑋𝐵 ) → ( 0 · 𝑋 ) = if ( 0 = 0 , 0 , if ( 0 < 0 , ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 0 ) , ( ( invg𝐺 ) ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 0 ) ) ) ) )
9 eqid 0 = 0
10 9 iftruei if ( 0 = 0 , 0 , if ( 0 < 0 , ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ 0 ) , ( ( invg𝐺 ) ‘ ( seq 1 ( ( +g𝐺 ) , ( ℕ × { 𝑋 } ) ) ‘ - 0 ) ) ) ) = 0
11 8 10 eqtrdi ( ( 0 ∈ ℤ ∧ 𝑋𝐵 ) → ( 0 · 𝑋 ) = 0 )
12 4 11 mpan ( 𝑋𝐵 → ( 0 · 𝑋 ) = 0 )