Metamath Proof Explorer


Theorem seqid3

Description: A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a .+ -idempotent sums (or " .+ 's") to that element. (Contributed by Mario Carneiro, 15-Dec-2014)

Ref Expression
Hypotheses seqid3.1 φ Z + ˙ Z = Z
seqid3.2 φ N M
seqid3.3 φ x M N F x = Z
Assertion seqid3 φ seq M + ˙ F N = Z

Proof

Step Hyp Ref Expression
1 seqid3.1 φ Z + ˙ Z = Z
2 seqid3.2 φ N M
3 seqid3.3 φ x M N F x = Z
4 fvex F x V
5 4 elsn F x Z F x = Z
6 3 5 sylibr φ x M N F x Z
7 ovex Z + ˙ Z V
8 7 elsn Z + ˙ Z Z Z + ˙ Z = Z
9 1 8 sylibr φ Z + ˙ Z Z
10 elsni x Z x = Z
11 elsni y Z y = Z
12 10 11 oveqan12d x Z y Z x + ˙ y = Z + ˙ Z
13 12 eleq1d x Z y Z x + ˙ y Z Z + ˙ Z Z
14 9 13 syl5ibrcom φ x Z y Z x + ˙ y Z
15 14 imp φ x Z y Z x + ˙ y Z
16 2 6 15 seqcl φ seq M + ˙ F N Z
17 elsni seq M + ˙ F N Z seq M + ˙ F N = Z
18 16 17 syl φ seq M + ˙ F N = Z