Metamath Proof Explorer


Theorem mulgcld

Description: Deduction associated with mulgcl . (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses mulgcld.1 B=BaseG
mulgcld.2 ·˙=G
mulgcld.3 φGGrp
mulgcld.4 φN
mulgcld.5 φXB
Assertion mulgcld φN·˙XB

Proof

Step Hyp Ref Expression
1 mulgcld.1 B=BaseG
2 mulgcld.2 ·˙=G
3 mulgcld.3 φGGrp
4 mulgcld.4 φN
5 mulgcld.5 φXB
6 1 2 mulgcl GGrpNXBN·˙XB
7 3 4 5 6 syl3anc φN·˙XB