Metamath Proof Explorer


Theorem mulgnegneg

Description: The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)

Ref Expression
Hypotheses mulgnncl.b B = Base G
mulgnncl.t · ˙ = G
mulgneg.i I = inv g G
Assertion mulgnegneg G Grp N X B I -N · ˙ X = N · ˙ X

Proof

Step Hyp Ref Expression
1 mulgnncl.b B = Base G
2 mulgnncl.t · ˙ = G
3 mulgneg.i I = inv g G
4 1 2 3 mulgneg G Grp N X B -N · ˙ X = I N · ˙ X
5 4 fveq2d G Grp N X B I -N · ˙ X = I I N · ˙ X
6 simp1 G Grp N X B G Grp
7 1 2 mulgcl G Grp N X B N · ˙ X B
8 1 3 grpinvinv G Grp N · ˙ X B I I N · ˙ X = N · ˙ X
9 6 7 8 syl2anc G Grp N X B I I N · ˙ X = N · ˙ X
10 5 9 eqtrd G Grp N X B I -N · ˙ X = N · ˙ X