Metamath Proof Explorer


Theorem mulgnegneg

Description: The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)

Ref Expression
Hypotheses mulgnncl.b B=BaseG
mulgnncl.t ·˙=G
mulgneg.i I=invgG
Assertion mulgnegneg GGrpNXBI- N·˙X=N·˙X

Proof

Step Hyp Ref Expression
1 mulgnncl.b B=BaseG
2 mulgnncl.t ·˙=G
3 mulgneg.i I=invgG
4 1 2 3 mulgneg GGrpNXB- N·˙X=IN·˙X
5 4 fveq2d GGrpNXBI- N·˙X=IIN·˙X
6 simp1 GGrpNXBGGrp
7 1 2 mulgcl GGrpNXBN·˙XB
8 1 3 grpinvinv GGrpN·˙XBIIN·˙X=N·˙X
9 6 7 8 syl2anc GGrpNXBIIN·˙X=N·˙X
10 5 9 eqtrd GGrpNXBI- N·˙X=N·˙X