Step |
Hyp |
Ref |
Expression |
1 |
|
mulgnncl.b |
|- B = ( Base ` G ) |
2 |
|
mulgnncl.t |
|- .x. = ( .g ` G ) |
3 |
|
mulgneg.i |
|- I = ( invg ` G ) |
4 |
1 2 3
|
mulgneg |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) ) |
5 |
4
|
fveq2d |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( -u N .x. X ) ) = ( I ` ( I ` ( N .x. X ) ) ) ) |
6 |
|
simp1 |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> G e. Grp ) |
7 |
1 2
|
mulgcl |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. X ) e. B ) |
8 |
1 3
|
grpinvinv |
|- ( ( G e. Grp /\ ( N .x. X ) e. B ) -> ( I ` ( I ` ( N .x. X ) ) ) = ( N .x. X ) ) |
9 |
6 7 8
|
syl2anc |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( I ` ( N .x. X ) ) ) = ( N .x. X ) ) |
10 |
5 9
|
eqtrd |
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( -u N .x. X ) ) = ( N .x. X ) ) |