Metamath Proof Explorer


Theorem mulgnegneg

Description: The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)

Ref Expression
Hypotheses mulgnncl.b
|- B = ( Base ` G )
mulgnncl.t
|- .x. = ( .g ` G )
mulgneg.i
|- I = ( invg ` G )
Assertion mulgnegneg
|- ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( -u N .x. X ) ) = ( N .x. X ) )

Proof

Step Hyp Ref Expression
1 mulgnncl.b
 |-  B = ( Base ` G )
2 mulgnncl.t
 |-  .x. = ( .g ` G )
3 mulgneg.i
 |-  I = ( invg ` G )
4 1 2 3 mulgneg
 |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( -u N .x. X ) = ( I ` ( N .x. X ) ) )
5 4 fveq2d
 |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( -u N .x. X ) ) = ( I ` ( I ` ( N .x. X ) ) ) )
6 simp1
 |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> G e. Grp )
7 1 2 mulgcl
 |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( N .x. X ) e. B )
8 1 3 grpinvinv
 |-  ( ( G e. Grp /\ ( N .x. X ) e. B ) -> ( I ` ( I ` ( N .x. X ) ) ) = ( N .x. X ) )
9 6 7 8 syl2anc
 |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( I ` ( N .x. X ) ) ) = ( N .x. X ) )
10 5 9 eqtrd
 |-  ( ( G e. Grp /\ N e. ZZ /\ X e. B ) -> ( I ` ( -u N .x. X ) ) = ( N .x. X ) )