| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mulgnncl.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mulgnncl.t | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 3 |  | mulgneg.i | ⊢ 𝐼  =  ( invg ‘ 𝐺 ) | 
						
							| 4 | 1 2 3 | mulgneg | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( - 𝑁  ·  𝑋 )  =  ( 𝐼 ‘ ( 𝑁  ·  𝑋 ) ) ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( 𝐼 ‘ ( - 𝑁  ·  𝑋 ) )  =  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁  ·  𝑋 ) ) ) ) | 
						
							| 6 |  | simp1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  𝐺  ∈  Grp ) | 
						
							| 7 | 1 2 | mulgcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( 𝑁  ·  𝑋 )  ∈  𝐵 ) | 
						
							| 8 | 1 3 | grpinvinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑁  ·  𝑋 )  ∈  𝐵 )  →  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁  ·  𝑋 ) ) )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 9 | 6 7 8 | syl2anc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( 𝐼 ‘ ( 𝐼 ‘ ( 𝑁  ·  𝑋 ) ) )  =  ( 𝑁  ·  𝑋 ) ) | 
						
							| 10 | 5 9 | eqtrd | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑁  ∈  ℤ  ∧  𝑋  ∈  𝐵 )  →  ( 𝐼 ‘ ( - 𝑁  ·  𝑋 ) )  =  ( 𝑁  ·  𝑋 ) ) |